29 October 2013

Lasers, Computers, and Science Lead to Advances in Aluminum Technology

Scientists have discovered a platform to study how aluminum reacts with water; a process that produces a multitude of varied and complex compounds. For almost a century, the aqueous solution of aluminum have been a mystery to science. Using lasers, computers and chemistry, the researchers at Oregon State University and the University of Oregon have found a way to control the synthesis of aqueous aluminum clusters.

The chemical element Aluminum is a silvery white, soft, ductile metal. Next to oxygen and silicon, aluminum is the third most abundant element on the planet.

Even if it makes up about 8% of the total weight of the Earth's surface, aluminum is not found in its native and pristine state. Being chemically reactive, aluminum can be found combined with around 279 different minerals, even in drinking water.

The use of aluminum is varied and can be found in almost all segments of the world economy. Aluminum can be found in industries such as transportation, packaging, construction, consumer goods, and in electrical and industrial parts. Aluminum is also highly recyclable with a theoretical rate of 100% recyclability.

Recycled aluminium maintains the same physical properties as primary aluminium.

The recent breakthrough in aluminum technology may lead to other applications covering transistors, solar energy cells, corrosion protection, catalytic converters and other uses.

Scientific Advancements in Aqueous Aluminum Studies

Researchers at Oregon State University and the University of Oregon today announced a scientific advance that has eluded researchers for more than 100 years – a platform to fully study and understand the aqueous chemistry of aluminum, one of the world's most important metals.

The findings, reported in Proceedings of the National Academy of Sciences, should open the door to significant advances in electronics and many other fields, ranging from manufacturing to construction, agriculture and drinking water treatment.

Aluminum, in solution with water, affects the biosphere, hydrosphere, geosphere and anthrosphere, the scientists said in their report. It may be second only to iron in its importance to human civilization. But for a century or more, and despite the multitude of products based on it, there has been no effective way to explore the enormous variety and complexity of compounds that aluminum forms in water.

Now there is.

"This integrated platform to study aqueous aluminum is a major scientific advance," said Douglas Keszler, a distinguished professor of chemistry in the OSU College of Science, and director of the Center for Sustainable Materials Chemistry.

"Research that can be done with the new platform should have important technological implications," Keszler said. "Now we can understand aqueous aluminum clusters, see what's there, how the atomic structure is arranged."

Video: How Chemistry Transformed Aluminum

Chong Fang, an assistant professor of chemistry in the OSU College of Science, called the platform "a powerful new toolset." It's a way to synthesize aqueous aluminum clusters in a controlled way; analyze them with new laser techniques; and use computational chemistry to interpret the results. It's simple and easy to use, and may be expanded to do research on other metal atoms.

"A diverse team of scientists came together to solve an important problem and open new research opportunities," said Paul Cheong, also an OSU assistant professor of chemistry.

The fundamental importance of aluminum to life and modern civilization helps explain the importance of the advance, researchers say. It's the most abundant metal in the Earth's crust, but almost never is found in its natural state. The deposition and migration of aluminum as a mineral ore is controlled by its aqueous chemistry. It's found in all drinking water and used worldwide for water treatment. Aqueous aluminum plays significant roles in soil chemistry and plant growth.

Aluminum is ubiquitous in cooking, eating utensils, food packaging, construction, and the automotive and aircraft industries. It's almost 100 percent recyclable, but in commercial use is a fairly modern metal. Before electrolytic processes were developed in the late 1800s to produce it inexpensively, it was once as costly as silver.

Now, aluminum is increasingly important in electronics, particularly as a "green" component that's cheap, widely available and environmentally benign.

Besides developing the new platform, this study also discovered one behavior for aluminum in water that had not been previously observed. This is a "flat cluster" of one form of aluminum oxide that's relevant to large scale productions of thin films and nanoparticles, and may find applications in transistors, solar energy cells, corrosion protection, catalytic converters and other uses.

Ultimately, researchers say they expect new technologies, "green" products, lowered equipment costs, and aluminum applications that work better, cost less and have high performance.


Oregon State University
University of Oregon
Proceedings of the National Academy of Sciences
Latest Studies and Developments in Lithium Ion Battery Technology Presented at American Chemical Society Meet
Ultrathin Coating of Aluminum Oxide As Negative Electrode for Lithium Ion Batteries
Conductive Liquid Cement Developed From Mayenite and CO2 Laser Beam Heating
Stretchable Lithium Ion Battery Developed For Use In Implantable Electronic Biodevices
Warm White LED Lamp Using Single Yellow Phosphor Ideal For Indoor Lighting Developed
World Smallest Semiconductor Laser - Breakthrough in Photonic Technology
MIT News: The Future of Battery Technology: Liquid Metal Energy
Baryon Oscillation Spectroscopic Survey (BOSS) Publicly Release Data On More Than 750,000 Galaxies, Quasars, and Stars
Baryon Oscillation Spectroscopic Survey (BOSS) Studying and Observing the Accelerating and Expanding Universe