Every year, U.S. supermarkets lose roughly 10 percent of their fruits and vegetables to spoilage, according to the Department of Agriculture. To help combat those losses, MIT chemistry professor Timothy Swager and his students have built a new sensor that could help grocers and food distributors better monitor their produce.
The new sensors, described in the journal Angewandte Chemie, can detect tiny amounts of ethylene, a gas that promotes ripening in plants. Swager envisions the inexpensive sensors attached to cardboard boxes of produce and scanned with a handheld device that would reveal the contents’ ripeness. That way, grocers would know when to put certain items on sale to move them before they get too ripe.
“If we can create equipment that will help grocery stores manage things more precisely, and maybe lower their losses by 30 percent, that would be huge,” says Swager, the John D. MacArthur Professor of Chemistry.
Detecting gases to monitor the food supply is a new area of interest for Swager, whose previous research has focused on sensors to detect explosives or chemical and biological warfare agents.
“Food is something that is really important to create sensors around, and we’re going after food in a broad sense,” Swager says. He is also pursuing monitors that could detect when food becomes moldy or develops bacterial growth, but as his first target, he chose ethylene, a plant hormone that controls ripening.
The new sensors, described in the journal Angewandte Chemie, can detect tiny amounts of ethylene, a gas that promotes ripening in plants. Swager envisions the inexpensive sensors attached to cardboard boxes of produce and scanned with a handheld device that would reveal the contents’ ripeness. That way, grocers would know when to put certain items on sale to move them before they get too ripe.
“If we can create equipment that will help grocery stores manage things more precisely, and maybe lower their losses by 30 percent, that would be huge,” says Swager, the John D. MacArthur Professor of Chemistry.
Detecting gases to monitor the food supply is a new area of interest for Swager, whose previous research has focused on sensors to detect explosives or chemical and biological warfare agents.
“Food is something that is really important to create sensors around, and we’re going after food in a broad sense,” Swager says. He is also pursuing monitors that could detect when food becomes moldy or develops bacterial growth, but as his first target, he chose ethylene, a plant hormone that controls ripening.