The European Southern observatory and with the help of other agencies, has imaged a galactic collission that happened when the Universe was half its age using gravitational lensing.
Using state of the art instruments from all around the world, on the ground and in space, ESO has imaged galaxy H-ATLAS J142935.3-002836 in collision with another galaxy.
With the help of gravitational lensing which uses Einstein's theory that light can be bent given enough mass, scientists were able to study objects which would not be visible otherwise and to directly compare local galaxies with much more remote ones, seen when the Universe was significantly younger.
The image above shows the foreground galaxy that is doing the lensing, which resembles how our home galaxy, the Milky Way, would appear if seen edge-on. But around this galaxy there is an almost complete ring — the smeared out image of a star-forming galaxy merger far beyond.
In his theory of general relativity, Einstein predicted that given enough mass, light does not travel in a straight line but will be bent in a similar way to light refracted by a normal lens.”
Gravitational lensing is done with the help of galaxies and galaxy clusters which provides the mass that deflects light from objects behind them due to their strong gravity. The magnifying properties of this effect allow astronomers to study these objects.
The collision of H-ATLAS J142935.3-002836 was gathered using three ESO telescopes, the ALMA, APEX and VISTA, and with assistance of other telescopes and surveys namely: NASA/ESA Hubble Space Telescope, the Gemini South telescope, the Keck-II telescope, the NASA Spitzer Space Telescope, the Jansky Very Large Array, CARMA, IRAM and SDSS and WISE.
Using state of the art instruments from all around the world, on the ground and in space, ESO has imaged galaxy H-ATLAS J142935.3-002836 in collision with another galaxy.
With the help of gravitational lensing which uses Einstein's theory that light can be bent given enough mass, scientists were able to study objects which would not be visible otherwise and to directly compare local galaxies with much more remote ones, seen when the Universe was significantly younger.
The image above shows the foreground galaxy that is doing the lensing, which resembles how our home galaxy, the Milky Way, would appear if seen edge-on. But around this galaxy there is an almost complete ring — the smeared out image of a star-forming galaxy merger far beyond.
In his theory of general relativity, Einstein predicted that given enough mass, light does not travel in a straight line but will be bent in a similar way to light refracted by a normal lens.”
Gravitational lensing is done with the help of galaxies and galaxy clusters which provides the mass that deflects light from objects behind them due to their strong gravity. The magnifying properties of this effect allow astronomers to study these objects.
The collision of H-ATLAS J142935.3-002836 was gathered using three ESO telescopes, the ALMA, APEX and VISTA, and with assistance of other telescopes and surveys namely: NASA/ESA Hubble Space Telescope, the Gemini South telescope, the Keck-II telescope, the NASA Spitzer Space Telescope, the Jansky Very Large Array, CARMA, IRAM and SDSS and WISE.