A supernova or supernovae is an exploding star that releases much more energy than it normally would. They are extremely luminous and emit a powerful burst of radiation that often briefly outshines an entire galaxy. During this period a supernova can radiate as much energy as the Sun is expected to emit over its entire life span. The explosion expels much or all of a star's material at a velocity of up to 30,000 km/s (10% of the speed of light), driving a shock wave into the surrounding interstellar medium. This shock wave sweeps up an expanding shell of gas and dust called a supernova remnant.
A Type Ia supernova is a sub-category of supernova. It comes from an explosion of a white dwarf star, a small but very dense star that is made up mostly of electron-degenerate matter. A white dwarf is a star that has completed its normal life cycle and has ceased nuclear fusion. Despite this, white dwarfs are still capable of further fusion reactions that can generate a great amount of energy.
 |
The supernova PTF 11kx can be seen as the blue dot on the galaxy. The image was taken when the supernova was near maximum brightness by the Faulkes Telescope North. The system is located approximately 600 million light years away in the constellation Lynx.
Credit: BJ Fulton (Las Cumbres Observatory Global Telescope Network) |
Berkeley Lab researchers make historic observation of rare Type 1a supernova
Exploding stars called Type 1a supernova are ideal for measuring cosmic distance because they are bright enough to spot across the Universe and have relatively the same luminosity everywhere. Although astronomers have many theories about the kinds of star systems involved in these explosions (or progenitor systems), no one has ever directly observed one—until now.
In the August 24 issue of Science, the multi-institutional Palomar Transient Factory (PTF) team presents the first-ever direct observations of a Type 1a supernova progenitor system. Astronomers have collected evidence indicating that the progenitor system of a Type 1a supernova, called PTF 11kx, contains a red giant star. They also show that the system previously underwent at least one much smaller nova eruption before it ended its life in a destructive supernova. The system is located 600 million light years away in the constellation Lynx.
By comparison, indirect observations of another Type 1a supernova progenitor system (called SN 2011fe, conducted by the PTF team last year) showed no evidence of a red giant star. Taken together, these observations unequivocally show that just because Type 1a supernovae look the same, that doesn't mean they are all born the same way.
"We know that Type 1a supernovae vary slightly from galaxy to galaxy, and we've been calibrating for that, but this PTF 11kx observation is providing the first explanation of why this happens," says Peter Nugent, a senior scientist at the Lawrence Berkeley National Laboratory (Berkeley Lab) and a co-author on the paper. "This discovery gives us an opportunity to refine and improve the accuracy of our cosmic measurements."
"It's a total surprise to find that thermonuclear supernovae, which all seem so similar, come from different kinds of stars," says Andy Howell, a staff scientist at the Las Cumbres Observatory Global Telescope Network (LCOGT) and a co-author on the paper. "How could these events look so similar, if they had different origins?"
A One in a Thousand Discovery, Powered by Supercomputers
Although Type 1a supernovae are rare, occurring maybe once or twice a century in a typical galaxy, Nugent notes that finding a Type 1a progenitor system like PTF 11kx is even more rare. "You maybe find one of these systems in a sample of 1,000 Type 1a supernovae," he says. "The Palomar Transient Factory Real-Time Detection Pipeline was crucial to finding PTF 11kx."
The PTF survey uses a robotic telescope mounted on the 48-inch Samuel Oschin Telescope at Palomar Observatory in southern California to scan the sky nightly. As the observations are taken, the data travels more than 400 miles via high-speed networks--including the National Science Foundation's High Performance Wireless Research and Education Network and the Department of Energy's Energy Sciences Network (ESnet)--to the National Energy Research Scientific Computing Center (NERSC), located at Berkeley Lab. There, the Real-time Transient Detection Pipeline uses supercomputers, a high-speed parallel filesystem and sophisticated machine learning algorithms to sift the data and identify events for scientists to follow up on.